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Abstract. The problem of scheduling Pre-Operative Assessment Clinic (PAC)
consists of assigning patients to a day for the exams needed before a surgical pro-
cedure, taking into account patients with different priority levels, due dates, and
operators availability. Realizing a satisfying schedule is of upmost importance
for a clinic, since delay in PAC can cause delay in the subsequent phases, causing
a decrease in patients’ satisfaction. In this paper, we divide the problem in two
sub-problems: In the first sub-problem patients are assigned to a day taking into
account a default list of exams; then, in the second sub-problem, having the actual
list of exams needed by each patient, we use the results of the first sub-problem to
assign a starting time to each exam. We first present a mathematical formulation
for both problems. Then, we present solutions based on Answer Set Program-
ming (ASP): The first solution is a genuine ASP encoding of the sub-problems,
while the second introduces domain-specific optimizations. Experiments show
that both solutions provide satisfying results in short time, while the second is
able to prove optimality faster.

Keywords: Healthcare · Pre-Operative Assessment Clinic Scheduling · Answer
Set Programming

1 Introduction

The Pre-Operative Assessment Clinic (PAC) scheduling problem is the task of assign-
ing patients to a day, in which the patient will be examined and prepared to a surgical
operation, taking in account patients with different priority levels, due dates, and op-
erators availability. The PAC consists of several exams needed by patients to ensure
they are well prepared for their operation. This allows patients to stay at home until the
morning of the surgery, instead of being admitted to the hospital one or two days before
the scheduled operation; moreover, reducing waiting time between the exams increase
patient satisfaction [34] and avoid the cancellation of the surgery [22].

The problem is divided into two sub-problems [19]: In the first sub-problem, pa-
tients are assigned to a day taking into account a default list of exams, and the solution
has to schedule patients before their due date and prioritize the assignments to patients
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2 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

with higher priority. In the second sub-problem, the scheduler assigns a starting time to
each exam needed by the patients, considering the available operators and the duration
of the exams. A proper solution to the PAC scheduling problem is vital to improve the
degree of patients’ satisfaction and to reduce surgical complications. Complex combina-
torial problems, possibly involving optimizations, such as the PAC problem, are usually
the target applications of AI languages such as Answer Set Programming (ASP). Indeed
ASP, thanks to its readability and the availability of efficient solvers ([2, 10, 25, 27]), has
been successfully employed for solving hard combinatorial problems in several research
areas, and it has been also employed to solve many scheduling problems [35, 1, 15, 16,
5, 18, 4], also in industrial contexts (see, e.g., [20, 21, 37, 3] for detailed descriptions of
ASP applications).

In this paper, we first present a mathematical formulation of both sub-problems: In
the solution of the first sub-problem, the scheduler minimizes the number of unassigned
patients. Then, we propose a solution to the second sub-problem, using as input of
the problem the result of the first one and minimizing the time each patient stays at
the hospital. We then apply ASP to solve the PAC scheduling problem, by presenting
two ASP encodings for the sub-problems, and run an experimental analysis on PAC
benchmarks with realistic sizes and parameters inspired from data seen in literature,
varying the number of patients to schedule and the available operators. Overall, results
using the state-of-the-art ASP solver CLINGO [24] show that ASP is a suitable solving
methodology also for the PAC scheduling problem, even if often it takes a considerable
amount of time to prove the optimality of the solution of the second sub-problem. Thus,
we finally apply domain-specific optimizations, still expressed as ASP rules, which
consider the time slots in which exams can be effectively performed by patients, that
help to reduce the overall running time significantly.

The paper is then structured as follows. Sections 2 and 3 present an informal de-
scription of the problem and a precise, mathematical formulation, respectively. Then,
Section 4 shows our ASP encodings for both phases, whose experimental evaluation
is presented in Section 5. Domain-specific optimizations are introduced and evaluated
in Section 6. The paper ends by discussing related work and conclusions in Section7
and 8, respectively.

2 Problem Description

Since the schedule of the PAC day must be scheduled as soon as possible, this problem
is typically divided in two phases: In the first phase, since we deal with this sub-problem
before the actual PAC day, the clinics do not know which exams each patient will re-
quire, thus, as typically done in hospitals, we consider that each patient requires a de-
fault list of exams according to his specialty, i.e. the lists of exams are equal for patients
requiring the same specialty but differ among specialties, and the scheduler assigns the
day of PAC without considering the starting time of the exams. Thus, in the first sub-
problem the solution assigns patients overestimating the duration and the number of
exams needed. In particular, all the optional exams, such as exams required by smokers
or patients with diabetes, are assigned to all the patients in the first phase. The overes-
timation is important in order to have a second sub-problem which is not unsatisfiable.
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Then, when the operation day is closer, the hospital knows exactly the exams needed by
each patient and can assign the starting time of each exam. Going in more details, the
first sub-problem consists of scheduling appointments in a range of days for patients
requiring surgical operation. Each patient is linked to a due date, a target day, and a pri-
ority level: The due date is the maximum day in which (s)he can be assigned, the target
day is the optimal day in which schedule the appointment, while the solution prioritizes
patients with higher priority level. There are several exam areas, corresponding to the
locations in which patients will be examined. Each exam area needs operators to be ac-
tivated and has a limited time of usage. Each operator can activate three different exam
areas, but they can be assigned to just one exam area for each day. The solution must
assign the operators to the exam areas, to activate them, and the day of PAC to patients,
ensuring that the total time of usage of each exam location is lower than its limit. Since
in this first sub-problem the list of exams needed by patients is not the final list, i.e. just
the first and the last exam are the same for every patient, and in the second sub-problem
some exams could be added, the solution schedules patients leaving some unused time
to each exam area. An optimal solution minimizes the number of unassigned patients,
giving priority to patients with higher priority levels, and ties are broken by minimizing
the difference between the day assigned and the target day of each patient, giving again
precedence to patients with higher priority.

In the second sub-problem, patients are linked to their real exams, so the solution has
to assign the starting time of each exam, having the first sub-problem already assigned
the day. The input consists of registrations, exams needed by patients and the exam
areas activated. Exams are ordered, so the solution must assign the starting time of each
exam respecting their order and their duration, by considering that each exam area can
be used by one patient at a time. Finally, the solution minimizes the difference between
the starting time of the first exam and the last exam of each patient.

3 Formalization of the PAC Scheduling problem

In this section, we provide a mathematical formulation of the two sub-problems.

Definition 1 (first PAC sub-problem). Let

– R be a finite set of registrations;
– E = {e1, . . . ,em} be a set of m exams;
– EL = {el1, . . . ,eln} be a set of n exam locations;
– O be a finite set of operators;
– D = {t : t ∈ [1..14]} be the set of all days;
– δ : R 7→ {1,2,3,4} be a function associating a registration to a priority;
– ρ : R×E 7→ N be a function associating a registration and an exam to a duration

such that for a registration r and an exam e if ρ(r,e) > 0 then the registration r
requires the exam e;

– ε : D 7→ N be a function associating a day to the number of registration assigned
in the day d;

– ζ : N×oe2 7→ N be a function such that ζ (n) = (ts∗ ε(n))− (oe2∗ ε ∗ (ε −1));
– ω : R 7→ D be a function associating a registration to a due date;
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– λ : R 7→ D be a function associating a registration to a target day;
– σ : E 7→ EL be a function associating an exam to the exam location;
– ∆ : EL×D 7→ N be a function associating an exam location to the maximum sum

of exams lengths assignable to the exam location;
– τ : EL×D 7→ N be a function associating an exam location and a day to the re-

quired number of operators to be activated, such that τ(el,d) = n if the exam loca-
tion el in the day d requires n operators to be activated;

– θ : O×EL×D 7→ {0,1} be a function such that θ(o,el,d) = 1 if the operator o is
assigned to the exam location el in the day d, and 0 otherwise;

– oe1 be a constant used to decrease the maximum sum of exam lengths assignable
to the exam locations;

– oe2 be a constant used to decrease the maximum sum of exams duration assignable
to a day;

– ts be a constant that is equal to the number of time slots.

Let x : R×D 7→ {0,1} be a function such that x(r,d) = 1 if the registration r is
assigned to the day d, and 0 otherwise. Moreover, for a given x, let Ax = {(r,d) : r ∈
R,d ∈ D,x(r,d) = 1}.

Then, given sets R, E, EL, O,D, and functions δ , ρ , ε , ω , λ , σ , ∆ , τ , θ , the first
PAC sub-problem is defined as the problem of finding a schedule x, such that

(c1) |{d : x(r,d) = 1}| ≤ 1 ∀r ∈ R,d ≤ ω(r);
(c2) |{d : x(r,d) = 1}|=0 ∀r ∈ R,d > ω(r);
(c3) |{o : θ(o,el,d) = 1}|=τ(el,d) ∀(r,d) ∈ Ax,ρ(r,e)> 0,el = σ(e);
(c4) |{el : θ(o,el,d)}| ≤ 1 ∀o ∈ O,∀d ∈ D;
(c5) ∑

x(r,d)=1,σ(e)=el
ρ(r,e)≤ ∆(el,d)/oe1 ∀el ∈ EL, t ∈ T ;

(c6) ∑
x(r,d)=1,∀e∈E

ρ(r,e)≤ ζ (ε(d),oe2) ∀d ∈ D;

Condition (c1) ensures that each registration is assigned at most one time in the
days before the due date associated to the registration. Condition (c2) ensures that each
registration is not assigned in a day after the due date associated to the registration.
Condition (c3) ensures that for each exam location used by at least one registration, the
required number of operators are assigned Condition (c4) ensures that each operator
is assigned to at most one exam location in each day. Condition (c5) ensures that the
sum of all the durations of the exams associated to an exam location in a day is less or
equal to the maximum time assignable to that exam location divided by the value oe1.
Condition (c6) ensures that the sum of all exam durations in a day is less than a value
obtained with the number of registrations assigned in the day and the value oe2.

Definition 2 (Unassigned registrations). Given a solution x, let U pr
x = {r : r ∈R,δ (r)=

pr,r ̸∈ Ax}. Intuitively, U pr
x represents the set of registrations of priority pr that were

not assigned to any day.

Definition 3 (Distance target day). Given a solution x, let t pr
x = ∑

x(r,d)∈Ax,δ (r)=pr
| d −

λ (r) | . Intuitively, t prx represents the sum of the distance between the day assigned to
the registrations of priority pr and the target day associated.
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Definition 4. A solution x is said to dominate a solution x’ if |U pr
x | < |U pr

x′ | for the
biggest pr for which |U pr

x | ̸= |U pr
x′ | or if |U pr

x |= |U pr
x′ | for all the pr and |t pr

x |< |t pr
x′ | for

the biggest pr for which |t pr
x | ̸= |t pr

x′ |.

Definition 5 (second PAC sub-problem). Let

– T = {t : t ∈ [1..ts]} be the set of all time slots;
– β : R×E 7→ N be a function associating a registration and an exam to a value

corresponding to the order in which the exam must be assigned.
– γ : EL 7→ N be a function associating an exam location to the starting time of the

exam location;
– ξ : EL 7→ N be a function associating an exam location to the ending time of the

exam location;
– µ : EL 7→ N be a function associating an exam location and a day to the maximum

number of registration that can be assigned concurrently.

Let x : R×E ×EL×T 7→ {0,1} be a function such that x(r,e,el, t) = 1 if the reg-
istration r and the exam e are assigned to the exam location el in the time slot t, and
0 otherwise. Moreover, for a given x let Ax = {(r,e,el, t) : r ∈ R,e ∈ E,el ∈ EL,d ∈
D,x(r,e,el, t) = 1}.

Then, given sets R, E, EL, T , and functions ρ , β , γ , ξ , µ , the second PAC sub-
problem is defined as the problem of finding a schedule x, such that

(c7) |{t : x(r,e,el, t) = 1, t ∈ T}|=1 ∀e ∈ E,∀r ∈ R,ρ(r,e)> 0,σ(e) = el;
(c8) γ(el)≤ t ≤ ξ (el)−β (r,e) ∀(r,e,el, t) ∈ Ax.
(c9) x(r,e,el, t) = 0 ∀(r,e′,el, t ′) ∈ Ax,∀e ∈ E,ρ(r,e′) = d,∀t ∈ T, t ′ ≤ t < t ′+d;
(c10) t > t ′ ∀(r,e,el, t) ∈ Ax,(r,e′,el, t ′) ∈ Ax,β (r,e)> β (r,e′);
(c11) |{r : x(r,e,el, t) = 1,r ∈ R,e ∈ E}|= µ(el) ∀el ∈ EL, t ∈ T ;

Condition (c7) ensures that each exam is assigned exactly once. Condition (c8) en-
sures that each exam is assigned after the starting time of the required exam location
and before the closing time of the required exam location minus the duration of the
exam. Condition (c9) ensures that for each registration each exam is assigned after that
the exam before is ended. Condition (c10) ensures that each exam is assigned after the
exams with lower order. Condition (c11) ensures that the number of exams assigned to
a location is lower than the maximum availability for each location in any time slot.

Definition 6 (Time in hospital). Given a solution x, let

mx = ∑
r∈R,x(r,0,el,t)∈Ax,x(r,23,el,t ′)∈Ax

t ′+ρ(r,23)− t.

Intuitively, mx represents the sum of the difference between the ending time of the last
exam and the starting time of the first exam of each registration.

Definition 7. A solution x is said to dominate a solution x’ if mx < mx′ .

4 ASP Encoding

In this section we present the ASP encoding for the two sub-problems, in two separate
sub-sections.
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1 {x(RID,PR,TOTDUR,DAY) : day(DAY), DAY < DUEDATE} 1 :- reg(RID,PR,TARGET,TOTDUR,DUEDATE).
2 :- x(RID,_,_,DAY), exam(RID,FORNID,_), not examLoc(FORNID,_,_,DAY,_).
3 res(RID,FORNID,DAY,DUR) :- x(RID,PR,_,DAY), exam(RID,FORNID,DUR).
4 :- N1 = #count{FORNID: res(RID,FORNID,_,_)},N2 = #count{FORNID: exam(RID,FORNID,_,_)},

x(RID,_,_,_), N1 != N2.
5 :- #sum{DUR, RID: res(RID,FORNID,DAY,DUR)} > NHOURS/oe1, examLoc(FORNID,_,NHOURS,DAY,N).
6 :- #sum{TOTDUR, RID: x(RID,_,TOTDUR,DAY)} = M, #count{RID: x(RID,_,_,DAY)} = N, day(DAY), M

> ((ts*N)-(oe2*N*(N+1))), N>1.
7 {operator(ID, FORNID, DAY) : operators(ID, FORNID, DAY)} == NOP :- examLoc(FORNID, NOP, _,

DAY,_), res(REGID, FORNID, DAY, _).
8 :- operator(ID,FORNID1,DAY), operator(ID,FORNID2,DAY), FORNID1 < FORNID2.
9 unassignedP1(N) :- M = #count {RID: x(RID,1,_,_)}, N = totRegsP1 - M.

10 unassignedP2(N) :- M = #count {RID: x(RID,2,_,_)}, N = totRegsP2 - M.
11 unassignedP3(N) :- M = #count {RID: x(RID,3,_,_)}, N = totRegsP3 - M.
12 unassignedP4(N) :- M = #count {RID: x(RID,4,_,_)}, N = totRegsP4 - M.
13 :∼ unassignedP1(N). [N@8]
14 :∼ unassignedP2(N). [N@7]
15 :∼ unassignedP3(N). [N@6]
16 :∼ unassignedP4(N). [N@5]
17 :∼ x(RID,1,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@4,RID]
18 :∼ x(RID,2,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@3,RID]
19 :∼ x(RID,3,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@2,RID]
20 :∼ x(RID,4,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@1,RID]

Fig. 1. ASP encoding of the first sub-problem

4.1 ASP Encoding for the first PAC sub-problem

We assume the reader is familiar with syntax and semantics of ASP. Starting from the
specifications in the previous section, here we present the ASP encoding for the first
sub-problem, based on the input language of CLINGO [23]. For details about syntax and
semantics of ASP programs we refer the reader to [9].

Data Model. The input data is specified by means of the following atoms:

– Instances of reg(RID,PR,TARGET,TOTDUR,DUEDATE) represent the registrations,
characterized by an id (RID), the priority level (PR), the ideal day in which the
patient should be assigned (TARGET), the sum of the durations of the exams needed
by the patient (TOTDUR), and the due date (DUEDATE).

– Instances of exam(RID,FORNID,DUR) represent the exams needed by the patients
identified by an id (RID), the exam area (FORNID), and the duration (DUR).

– Instances of examLoc(FORNID,NOP,NHOURS,DAY,N) represent the exam areas,
characterized by an id (FORNID), which requires NOP operators to be activated,
which is active for a certain time (NHOURS) in a day (DAY), and can be concurrently
assigned up to N patients.

– Instances of operators(ID,FORNID,DAY) represent the operators, characterized
by an id (ID), who can be assigned to the exam ares (FORNID) in a day (DAY).

– Instances of day(DAY) represent the available days.

The output is an assignment represented by an atom of the form x(RID,PR,TOTDUR,DAY),
where the intuitive meaning is that the exams of registration with id RID and priority
level PR is assigned to the day DAY and has a total duration of exams equal to TOTDUR.
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1 {x(RID,FORNID,ST,ST+DUR,DAY) : examLoc(FORNID,DAY,FORNST,FORNET,_), time(ST), ST >= FORNST,
ST <= FORNET-DUR} = 1 :- reg(RID,DAY), esame(RID,FORNID,DUR).

2 :- x(RID,FORNID1,ST1,_,_), x(RID,FORNID2,ST2,_,_), phase(FORNID1,ORD1), phase(FORNID2,ORD2),
ORD2 < ORD1, ST1 < ST2.

3 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > 1, reg(RID,DAY), time(T).
4 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > N, examLoc(FORNID,DAY,_,_,N),

time(T).
5 :∼ reg(RID,_), x(RID,0,ST,_,_), x(RID,23,_,ET,_). [ET-ST@1, RID]

Fig. 2. ASP encoding of the second sub-problem

Encoding. The related encoding is shown in Figure 1, and is described in the following.
To simplify the description, we denote as ri the rule appearing at line i of Figure 1.

Rule r1 assigns registrations to a day. The assignment is made assigning a day that
is before the due date. Rule r2 checks that every registration is assigned to a day with
all the exams area needed to be activated. Rule r3 derives an auxiliary atom that is
used later in other rules. In particular, the new atom is used to get the duration of the
visit for each patient and for each exam area. Then, rule r4 checks that the number of
needed exams and the number of res atoms created are the same. Rule r5 is used to
ensure that each exam area is used for a total amount of time that is lower than its limit
divided by the oe1 constant, in order to overestimate the required time for the visits.
Rule r6 is used to be sure to not assign too many patients in the first sub-problem to a
particular day. So, it overestimates the time needed by each patient, the degree of the
overestimation can be changed by using different oe2 values. Rule r7 assigns operators
to the required exam areas. Rule r8 checks that each operator is assigned to just one
exam area in every day. Rules from r9 to r12 are needed to derive auxiliary atoms that
are used later on in optimization. In particular, they are used to count how many patients
with different priorities are not assigned to a day. Weak constraints from r13 and r16
are used to minimize the number of unassigned registrations according to their priority.
Finally, weak constraints from r17 and r20 minimize the difference between the assigned
and target day of each patient, giving precedence to higher priorities.

4.2 ASP Encoding for the second PAC sub-problem

Data Model. The input data is the same of the first sub-problem for the atoms exam
and time, while other atoms are changed:

– Instances of reg(RID,DAY) represent the registrations, characterized by an id (RID)
assigned to a day (DAY).

– Instances of examLoc(FORNID,DAY,FORNST,FORNET,N) represent the exam ar-
eas, characterized by an id (FORNID), which in a day (DAY) has a starting time and
closing time respectively equals to FORNST and FORNET, which is active for a cer-
tain value of time (NHOURS) in a day (DAY), and can provide the exam to N patients.

– Instances of phase(FORNID, ORD) represent the order (ORD) of the exams pro-
vided by the exam area characterized by an id (FORNID).

The output is represented by an atom of the form x(RID,FORNID,ST,ET,DAY),
where the intuitive meaning is that the exam of the registration with id RID is in exam
area FORNID, starts at time ST and ends at time ET, on the day DAY.
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Encoding. The encoding consists of the rules reported in Figure 2. Rule r1 assigns a
starting and an ending time to each exam needed by every patient, checking that the
time in which is assigned is inside the opening time of the required exam area. Rule
r2 ensures that the order between the exams is respected. Rules r3 checks that each
patient is assigned to at most one exam for every time slot. Then, rule r4 checks that
each exam area provides the exam to at most N patients for every time slot. Finally, rule
r5 minimizes the difference between the ending time of the last exam and the starting
time of the first exam of each patient.

5 Experimental Results

In this section, we report the results of an empirical analysis of the PAC scheduling
problem via ASP. For the first sub-problem, data have been randomly generated using
parameters inspired by literature and real world data, then the results of the first sub-
problem have been used as input for the second sub-problem. The experiments were
run on a AMD Ryzen 5 2600 CPU @ 3.40GHz with 16 GB of physical RAM. The ASP
system used was CLINGO [23] 5.4.0, using parameters --restart-on-model for faster
optimization and --parallel-mode 8 for parallel execution. This setting is the result of a
preliminary analysis done also with other parameters, e.g., --opt-strategy=usc for
optimization. The time limit was set to 300 seconds for both sub-problems.

PAC benchmarks. Data are based on the sizes and parameters of a typical middle sized
hospital, with 24 different exam areas. For the benchmarks we considered the constants
oe1 and oe2 equal to 2 and 5, respectively. The values of the constants oe1 and oe2 are
used to overestimate the required resources, by adding limits to the assignments to exam
locations, for avoiding solutions of the first sub-problem that could lead to unsatisfiable
problems in the second sub-problem. Thus, we set the two variables in a safe range,
while a hospital could decide to decrease the values of oe1 and oe2 to increase the
number of patients assignable in the first sub-problem. The solution schedules patients
in a range of 14 days, for each day there are 60 time slots, thus the constant ts is set to
60, corresponding to 5 minute per time slot. To test scalability we generated 3 different
benchmarks of different dimensions. Each benchmark was tested 5 times with different
randomly generated input.

In particular, each patient is linked to a surgical specialty, and needs a number of
exams between 5 and 13, according to the specialty, while the duration of each exam
varies between 3 and 6 time slots. The priorities of the registrations have been generated
from an even distribution of four possible values (with weights of 0.25 for registrations
having priority 1, 2, 3, and 4, respectively). For all the benchmarks, there are 24 exam
areas and the operators, that are 35, can be assigned to 3 different exam areas. So, by
increasing the number of patients while maintaining fixed the number of operators, we
tested different scenarios with low, medium and high requests.

For the second sub-problem, we used the results of the first sub-problem as input.
Thus, the number of patients and the exam locations activated depend on the assign-
ment of the solution of the first sub-problem. Patients require all the same first and last
exam, while the other exams required by each patient are linked to an order that is ran-
domly assigned and that must be respected by the scheduler. In the second sub-problem
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Fig. 3. Number of patients assigned to each day by the scheduler with 40 patients as input

Table 1. Percentage of assigned patients according to their priority level

Total #Patients %P1 assigned %P2 assigned %P3 assigned %P4 assigned
40 94% 85% 77% 66%
60 90% 69% 20% 13%
80 67% 22% 14% 10%

clinics know the actual list of exams needed by patients: To simulate this scenario, we
randomly added and discarded the optional exams assigned to patients in the first sub-
problem. For example, optional exams are needed by patients that are over 65 years old
or smokers. 5 instances for each benchmark have been generated, each corresponding
to the assignments of 14 days.

Results for the first sub-problem. The first optimization criteria in the PAC schedul-
ing sub-problem is to assign as many patients as possible, starting from patients with
higher priority. Our solution is able to assign a day to 201 patients out of 217 patients
with highest priority; moreover, the scheduler is able to assign all or all but one patients
with the highest priority in 12 out of 15 instances tested. Instances with 80 patients are
more difficult, since in this scenario the number of operators is not enough to deal with
the high number of patients.

In Table 1 are summarized the results obtained in this first sub-problem, in particu-
lar, the table shows the average number of patients from the 5 instances assigned with
40, 60, and 80 patients according to their priority level.

The second optimization criteria is to have an assigned day that is as much near
as possible to the target day. This optimization criteria is able to assign patients with
higher priority near to their target day while; instead, for patients with lower priorities,
quality decreases. This is due to two reasons: The first one is that there are more op-
timization criteria with higher priorities, then, the scheduler already tries to assign as
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Fig. 4. Representations of the assignments of the starting time of the different exam locations of
each patient in a single day

many patients as possible, without taking into account the target days of the patients,
and the second one is that some patients have a target day in a day without their exam
locations available, so, even in an optimal solution the assigned day to some patients
would not be in the target day.

Figure 3 reports the result obtained by the scheduler with one of the instances with
40 patients as input. What can be seen from the graph is that some patients are assigned
in days 11 and 12, while in days 9 and 10 there are no patients assigned. This can be
explained by the fact that the scheduler tries to assign as many patients as possible and
do not try to assign as soon as possible the patients. Moreover, in some days patients can
not be assigned due to the unavailability of the exam locations required. In particular, in
the assignments in Figure 3, patients that are assigned in day 11 could not be assigned
to another day, because that day is the only day with the exam locations they required.

Results for the second sub-problem. In the second sub-problem the solution assigns
the starting time of each exam of the patients. The input is taken from the results ob-
tained in the first sub-problem. The solution minimizes the difference between the end-
ing time of the last exam and the starting time of the first exam. While minimizing this
value the solution tries to minimize the time spent in the hospital by all patients. In this
sub-problem the scheduler is able to reach an optimal solution in 13 out of 15 instances
tested. While the average total duration of the exams for each patient is 37 time slots,
the solution finds a schedule that allows patients to have an average time in hospital that
is just 38.5 time slots.

The results are obtained on average in 152, 186, 220 seconds in the instances with
40, 60 and, 80 patients, respectively. Figure 4 represents the starting times assigned to
each patient in a particular day. The patients that must be scheduled are the same that are
assigned by the first sub-problem in this day; the scheduler of the second sub-problem
minimizes the waiting times of each patient.

As can be seen in Figure 4 the scheduler is able to assign all patients optimally;
indeed, all patients have no waiting time between each exam and thus the time spent
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6 forbiddenAfter(RID,FORNID1,ST+DUR1) :- reg(RID,_,_), exam(RID,FORNID1,DUR1),
phase(FORNID1,ORD1), #sum{DUR2: exam(RID,FORNID2,DUR2), phase(FORNID2,ORD2), ORD2 >
ORD1 } = ST.

7 forbiddenBefore(RID,FORNID1,ST) :- reg(RID,_,_), exam(RID,FORNID1,DUR1),
phase(FORNID1,ORD1), #sum{DUR2: exam(RID,FORNID2,DUR2), phase(FORNID2,ORD2), ORD2 <
ORD1 } = ST.

8 {x(REGID,FORNID,ST,ST+DUR,DAY): examLoc(FORNID,DAY,FORNST,FORNET,_),
forbiddenAfter(RID,FORNID,FORB1), forbiddenBefore(RID,FORNID,FORB2), time(ST), ST >=
FORNST, ST <= FORNET-DUR, ST <= lastTimeSlot-FORB1, ST > FORB2 } = 1 :-
reg(RID,PRI,DAY), exam(RID,FORNID,DUR).

Fig. 5. Optimized encoding for pruning the sessions’ starts

in the hospital is reduced to the minimum, while respecting the constraints of the sub-
problem, e.g., each exam location is assigned to at most one patient for each time slot.

6 Domain Specific Optimizations

Results show that ASP is a suitable methodology for solving the PAC problem. How-
ever, in the second sub-problem, we noted that our encoder is able to find the optimal
solution in every instance in a short time but then the solver needs a large amount of time
to prove optimality. For this reason, we decided to perform some domain specific opti-
mizations, presented in the following two paragraphs, in order to decrease the grounding
and planning time with the aim of improving performance. These optimizations rely on
the knowledge of the PAC domain and the possibility of pruning impossible solutions
already in the grounding process, as the results in the third paragraph show.

Pruning of exams’ starting time slots. As shown in Figure 2, in r1 the starting time
of the exams is guessed between all the available daily time slots, expressed by the
atom time(ST). Given that the exams must be assigned following an order, it is known
the minimum number of time slots that each patient need to stay before and after each
exam. Thus, the guess rule can be improved by reducing the number of possible starting
time slots of each exam with the following constraints:

– an exam cannot start in a time slot if the remaining time slots are less than the
minimum amount of time slots required to complete all the following exams;

– an exam cannot start in a time slot if the time slots before are less than the minimum
amount of time slots required to complete the previous exams.

The encoding for pruning the exams’ starting time slots is reported in Figure 5. In
rules r6 and r7 two new atoms forbiddenAfter and forbiddenBefore are defined as
the minimum amount of time slots needed by each patient after (before) each exam. The
minimum amount of time slots required by the exams after (before) each exam is ob-
tained by computing the sum of the duration of the exams with the greater (lower) phase
value. In r8 the two new atoms are used in the guess rule, so that the starting time is after
the value computed by the rule r6 and after the difference between lastTimeSlot, that
corresponds to the last time slot, and the value computed by r7.
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9 cost(RID, TOT) :- TOT = #sum{DUR,FORNID : exam(RID,FORNID,DUR)}, reg(RID,_,_).
10 :∼ x(RID,0,ST,_,_),x(RID,23,_,ET,_), cost(RID,TOT), ET-ST-TOT >= 0. [ ET-ST-TOT@1, RID]

Fig. 6. Optimized minimization rule

Table 2. Comparison of the mean time required to reach the optimal solution in the three scenarios
with the different versions of the encoding for the second sub-problem

#Patients ENC (s) ENC+OPT1 (s) ENC+OPT2 (s) ENC+OPT1+OPT2 (s)
40 152 54 5 1
60 186 54 5 1
80 220 77 7 2

Percentage Optimal 86,7% 100% 100% 100%

Minimization with lower bound. As it can be seen in Figure 2, rule r5 minimizes the
time spent in the hospital by each patient, computed as the difference between the end-
ing time of the last exam and the starting time of the first exam. However, the time spent
in the hospital by each patient cannot be lower than the sum of the duration of all the
required exams. Therefore, the minimization rule can be improved by computing the
minimum time required by each patient and using it as a lower bound, so that solutions
below this value are pruned.

The enconding with the optimized weak constraint is shown in Figure 6. In rule r9,
the minimum length of time to fully complete all the exams for each patient is computed
as the sum of the duration of all the exams and the new auxiliary atom cost(RID,

TOT) is defined. The weak constraint, in rule r10, minimizes the difference between
the planned total time (i.e. the difference between ending time and starting time of
the last and first exam) and the lower bound previously computed, activating the weak
constraint only when the difference is greater or equal than zero.

Results. In Table 2 the time to reach the optimal solution with the basic encoding,
defined as ENC, and with the different optimizations, defined as OPT1 and OPT2, re-
spectively, are reported. In particular, we define ENC+OPT1 as the encoder obtained
by adding the rules in Figure 5 to the encoder defined in Figure 2 and by dropping
the rule r1 in Figure 2, ENC+OPT2 as the encoder obtained by adding the rules in
Figure 6 to the encoder defined in Figure 2 and by dropping the rule r5 in Figure 2,
and ENC+OPT1+OPT2 as the encoder obtained by adding both optimizations. From
Table 2, it can be noted that, while the original encoder is able to reach the optimal
solution with 87% of the instances, all the encoders utilizing the different optimizations
are able to reach the optimal solution on all instances. Moreover, ENC+OPT1 gives
better performance than ENC, in particular, is able to prune a lot of possible solutions
thanks to the new rules but, as we previously noted, some time is still spent computing
solutions below the known lower bound. With ENC+OPT2, the performance increases
noticeably, leading to the optimal solution in a few seconds. While adding either OPT1
and OPT2 led to better results, being able to reach an optimal solution in all the in-
stances in up to 2 seconds, further increasing the performance.
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7 Related Work

This paper is an extended and revised version of a paper appearing in the CEUR pro-
ceedings [13], having the following main improvements: (i) a mathematical formulation
of the two phases of the problem (Section 3), which could be a starting point for testing
other languages and tools from experts, (ii) domain-specific optimizations to the previ-
ous encoding, and a related experimental analysis, focused on improving the grounding
phase of the ASP solver (Section 6), and (iii) a more complete related work section,
that now includes also recent studies in which ASP has been employed to closely re-
lated scheduling problems (reported below).

The section is organized in two paragraphs: the first is focused on alternative meth-
ods for solving the PAC problem, while the second mentions works in which ASP has
been employed to closely related scheduling problems.

Solving the PAC problem. The work in [19] used two simulation models to analyse the
difficulties of planning in the context of PAC and to determine the resources needed to
reduce waiting times and long access times. The models were tested in a large university
hospital and the results were validated measuring the level of patient satisfaction. [38]
used a Lean quality improvement process changing the process and the standard routine.
For example, patients were not asked to move from a room to another for the visits, but
patients were placed in a room, and remained there for the duration of their assessment.
This and other changes to the processes led to the decrease of the average lead time
for patients and to the number of patients required to return the next day to complete
the visits. [34], [22], [39], and, [40] studied the importance of implementing the PAC
and the positive results obtained by having less waiting time between the exams and for
the visit to the hospital. In particular, while different clinics follow different guidelines,
implementing PAC has proved to be an important tool to avoid the cancellation of the
surgeries and to significantly reduce the risk associated with the surgery.

Solving scheduling problems with ASP. ASP has been successfully used for solving
hard combinatorial and application scheduling problems in several research areas. In
the Healthcare domain (see, e.g., [3] for a recent survey), the first solved problem was
the Nurse Scheduling Problem [4, 18, 5], where the goal is to create a scheduling for
nurses working in hospital units. Then, the problem of assigning operating rooms to
patients, denoted as Operating Room Scheduling [16, 17], has been treated, and further
extended to include bed management [15]. More recent problems include the Chemoth-
erepy Treatment Scheduling problem [14], in which patients are assigned a chair or a
bed for their treatments, and the Rehabilitation Scheduling Problem [12], which assigns
patients to operators in rehabilitation sessions. The current paper is the only one which
deals with the pre-operative phase, and presents a two phases approach.

Concerning scheduling problems beyond the Healthcare domain, ASP encoding
were proposed for the following problems: Incremental Scheduling Problem [8, 11, 26,
25], where the goal is to assign jobs to devices such that their executions do not overlap
one another; Team Building Problem [35], where the goal is to allocate the available
personnel of a seaport for serving the incoming ships; and the Conference Paper As-
signment Problem [6], which deals with the problem of assigning reviewers in the Pro-
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gram Committee to submitted conference papers. Other relevant papers are Gebser et.
al [28], where, in the context of routing driverless transport vehicles, the setup problem
of routes such that a collection of transport tasks is accomplished in case of multiple
vehicles sharing the same operation area is solved via ASP, in the context of car assem-
bly at Mercedes-Benz Ludwigsfelde GmbH, and the recent survey paper by Falkner
et al. [21], where industrial applications dealt with ASP are presented, including those
involving scheduling problems.

8 Conclusion

In this paper, we have presented an analysis of the PAC scheduling problem modeled
and solved with ASP. We started from a mathematical formulation of the problem,
which considers constraints and parameters that can be found in other works, and then
presented our ASP solution. The solution is further improved with domain specific op-
timizations. Results on synthetic data shows that the solution is able to assign a high
number of patients with higher priority, and that the domain-specific optimizations help
to reduce the time to prove optimality. We are currently working on extending our exper-
iments, and comparing to other languages and tools using the mathematical formulation
in Section 3. Moreover, we would like also to implement and test other solving proce-
dures, e.g., [33, 31, 32, 36], considering the relation between ASP and SAT procedures
[30, 29], whose goal would be to further improve scalability. Finally, we plan to add this
solution into a platform of solutions for scheduling problems in Healthcare, similarly
to, e.g., [7] in the context of SMT solving.
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